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TWIN-INTAXE AIR-INDUCTION SYSTEMS ON AIRPLANE 

STATIC STABILITY AT SUPERSONIC SPEEDS* 

By Warren E. Anderson and Edward W. Perkins 

SUMMARY 

Twin-duct flow asymmetry and i t s  e f fec t  on s t a t i c  s t a b i l i t y  w a s  
invest igated on three  complete airplane configurations.  
number range extended from 1.6 t o  2.35. 
from 2.4~10~ t o  1.7x106 f o r  t h i s  Mach number range. 
w a s  var ied from -2' t o  +15O and angle of s i d e s l i p  from -5 

The tes t  Mach 
Reynolds number per  foot var ied 

The angle o f  a t t ack  
t o  + 7 O .  

0 

The r e s u l t s  show t h a t  flow asymmetry i s  promoted at reduced mass- 
flow r a t i o s .  Associated with flow asymmetry a r e  high l e v e l s  of i n t e r n a l  
flow unsteadiness; there  a re  also s igni f icant  var ia t ions  i n  fuselage and 
wing surface pressures which a f f ec t  the l a t e r a l  s t a b i l i t y .  

Previously published f l i g h t  simulation s tudies  show t h a t  t he  
s t a b i l i t y  increments measured i n  the  wind tunnel  account f o r  t he  osc i l -  
l a t i o n s  encountered i n  f l i g h t .  

Flow def lec tors  forward of the i n l e t  s t a t i o n  were found t o  reduce 
flow asymmetry e f f ec t ive ly  with no adverse e f f e c t  on a i rp lane  s t a t i c  
s tabi l i ty .  

INTRODUCTION 

Twin-intake air-induction systems have been used extensively f o r  
j e t  a i r c r a f t  operating at  subsonic and supersonic speeds. Such a system 
u t i l i z e s  symmetrical twin intakes which jo in  i n  a common duct a t  a 
s t a t ion  forward of the engine compressor. 
can give r e l a t ive ly  high efficiency, it i s  suscept ible  t o  twin-duct r low 

Although t h i s  type of system 

r 
* T i t l e ,  Unclassified 

UiKhASSiFiED 



2 

- %  i n s t a b i l i t y  characterized by i n l e t  flow asymmetry when operated at 
reduced mass-flow conditions. The inherent flow asymmetry of twin-inlet  
systems has been analyzed i n  references 1 and 2 and found t o  be associated 
with the static-pressure cha rac t e r i s t i c s  of the  individual ducts.  

.. 

Wind-tunnel observations of twin-duct flow asymmetry .at supersonic 
speeds have been reported i n  references 3, 4, and 5. 
indicates t ha t  flow unsteadiness o r  r'buzz" can occur simultaneously with 
flow asymmetry. 
indicates duct-flow asymmetry produces an unbalance of pressure forces  on 
t h e  airplane which leads t o  severe a i r c r a f t  s t a b i l i t y  and control  problems. 
Heretofore, wind-tunnel measurements of these forces,  knowledge of which 
are necessary t o  any analysis  of t he  s t a b i l i t y  var ia t ions  involved, have 
not been reported. 

Reference 3 a l so  

Fl ight  experience such as t h a t  reported i n  reference 6 

The purpose of t h i s  invest igat ion w a s  t o  examine the  nature of 
asymmetrical flow i n  twin-intake systems at supersonic speeds and t o  
measure the  e f f ec t s  on airplane s t a t i c  s t a b i l i t y .  These measurements 

t he  adverse e f f ec t s  of flow asymmetry on a i r c r a f t  dynamics as recorded i n  
f l i g h t .  Possible methods of a l l ev ia t ing  the  unfavorable s t a b i l i t y  
charac te r i s t ic  s we re a l so  invest igated . 

were then u t i l i z e d  together with f l i g h t  simulation techniques t o  explain L 

Force and pressure measurements were obtained f o r  each of th ree  
One model (Model A) was complete twin-duct a i rplane configurations.  

investigated more extensively than the  other  two. For t h i s  model t he  
t e s t  Mach numbers were 1.6,  1.8, 2.0, and 2.35. 
foot  varied from 2 . 4 ~ 1 0 ~  t o  1.7~10~ f o r  t h i s  Mach number range. 
angle of a t tack  w a s  varied from -2' t o  +l5' and angle of s i d e l i p  from -5' 
t o  + 7 O .  
of a and at Mach numbers of 2.2 and 2.1, respect ively.  

The Reynolds number per  
The 

Models B and C were invest igated f o r  s l i g h t l y  d i f f e ren t  values 

SYMBOLS 

A duct cross-section area,  sq f t  

A, duct capture reference area,  sq f t  

b wing span, f t  

C wing chord, f t  

C2 rolling-moment coef f ic ien t ,  s t a b i l i t y  axis ,  - 
qSb 

2 

11 Cn yawing-moment coef f ic ien t ,  s t a b i l i t y  ax is ,  - 
@b 



1 e. 

d distance from reference s t a t ion ,  in. 

2 r o l l i n g  moment, f t - l b  
..a 

- p3v3A3 m3 i n l e t  mass-flow r a t i o ,  
mOS bV& 

M Mach number 

MAC mean aerodynamic chord, f t  

n yawing moment, f t - l b  

P pressure, lb/sq f t  

pz - pa2 P pressure coef f ic ien t ,  
q, 

.9 Ap peak t o  peak s ta t ic-pressure f luctuat ion,  lb/sq f t  

9 dynamic pressure,  lb/sq f t  

S wing area, sq f t  

v veloci ty ,  f t / s ec  

U angle of a t tack,  deg 

P angle of s ides l ip ,  deg 

P mass density,  slugs/cu f t  

* 

Sub scr ipts  

2 l o c a l  

t t o t a l  stagnation 

0 free stream 

3 compressor rake 

\ 
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TEST APPARATUS 

Models 

Three complete a i rplane configurations were t e s t e d  i n  the  9- by 
7-foot t e s t  sect ion of the  Ames Unitary Plan wind tunnel .  
of these models mounted i n  the  wind tunnel  a re  shown i n  figures l ( a ) ,  
2( a ) ,  and 3( a) . Drawings showing per t inent  model dimensions are pre- 
sented in  f igures  l ( b ) ,  2 (b ) ,  and 3(b) ,  and general i n l e t  d e t a i l s  f o r  
each model a re  shown i n  f igures  l ( c ) ,  2 ( c ) ,  and 3 ( c ) .  
incorporated a twin-intake air-induction system. Model A included a 
half-conical side-scoop system while Models B and C employed a double- 
ramp top-scoop and a double-ramp side-scoop system, respectively.  

Photographs 

Each model 

Fbselage boundary-layer d iver te rs  w e r e  u t i l i z e d  f o r  a l l  th ree  duct 
configurations. For Model A t he  d iver te r  w a s  formed by undercutting t h e  
fuselage-mounted cone a varying height from t h e  apex t o  t h e  cowl l i p  
s t a t ion .  Also, t he  inner cowl l i p  was  displaced from the  fuselage sur- 

i n l e t .  
I n l e t s  for  Models B and C were displaced outward from the  fuselage sur- 
face so  as t o  make space avai lable  t o  form the  d iver te rs .  A port ion of 
t he  fuselage boundary-layer flow o f  Model C w a s  taken in t e rna l ly  (see 
f i g .  3 ( c ) ) .  
surfaces, shown i n  f igure  2 ( c ) ,  which w a s  approximately 10 percent of 
t he  m a i n  duct flow. 

face t o  prevent external  boundary-layer air  from enter ing t h e  a. 

Model B incorporated in t e rna l  duct bleed on the  compression 

Instrument at ion 

S tz t ic  forces  were measured f o r  all models with a six-component 
strain-gage-type s t ing  balance and were recorded by a balanced-bridge 
automatic readout system. Model A w a s  a l s o  instrumented with resistance- 
type pressure transducers f o r  instantaneous measurement of t o t a l -  and 
static-pressure f luctuat ions within each of t he  t w o  ducts.  Balance and 
transducer measurements were recorded on a multichannel light-beam 
oscillograph. 

Total- and s ta t ic-pressure measurements were made with multitube 
rakes located at the  simulated compressor face .  Over-all pressure r a t i o s  
as presented a re  area-weighted averages of t h e  individual tube values. 
External s ta t ic-pressure measurements were o-btained with f lu sh  o r i f i c e s  
on the  fuselage surface.  All pressure measurements w e r e  recorded photo- 
graphically from back-lighted, multiple-tube, mercury manometers. 

Translating plugs mounted at the  e x i t s  of t he  in t e rna l  ducts con- 
t r o l l e d t h e  mass flow f o r  Models A and C .  Model B made use of an i r i s  

. 
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diaphragm f o r  t h i s  purpose. The plug controlled e x i t  areas were ca l i -  
brated f o r  choked flow conditions t o  permit computation of mass-flow 
r a t i o .  For model B a venturi  meter was used f o r  mass-flow measurement. -. 

Visual s tudies  of t he  external  f low were made with a s ingle  pass 
schl ieren system with f a c i l i t i e s  f o r  obtaining photographs and motion 
p ic tures  of t he  flow f luctuat ions.  

TEST PROCEDURE 

The bas ic  longi tudinal  and l a t e r a l  s t a b i l i t y  cha rac t e r i s t i c s  of 
each model were establ ished f o r  a range of angles of a t tack  and s i d e s l i p  
with the  twin-inlet  system operating at maximum mass-flow conditions.  
For each angle of a t tack  the  models were then posit ioned f o r  an angle of 
s ides l ip  of 0' and the  duct mass-flow r a t i o  w a s  reduced u n t i l  v i sua l  
indicat ions of flow asymmetry were observed. Force and pressure measure- 
ments were then obtained f o r  the  same schedule of angles of s ides l ip  used 
i n  es tab l i sh ing  the  basic  s t a b i l i t y  charac te r i s t ics .  No attempt w a s  made 
t o  maintain constant duct mass-flow ra t io  as t h e  model a t t i t u d e  departed 
from the  zero s ides l ip  condition. Model A w a s  t e s t e d  at two conditions 
of reduced m a s s  flow, representing both s l i g h t  and r e l a t ive ly  severe 
i n l e t  flow asymmetry. Also, t h e  flow i n  one of t he  ducts of Model A w a s  
completely blocked t o  determine maximum flow asymmetry e f f ec t s .  Force 
measurements a t  only one reduced mass flow representing severe inlet 
flow asymmetry were made f o r  Models B and C.  

- 

The foregoing procedure w a s  a l s o  followed f o r  each model with the  
t a i l  removed t o  determine the  interact ion between the  i n l e t  flow asymmetry 
and the  t a i l  surfaces.  

Flow spoi le rs  were mounted on the half-cone center  bodies of Model A 
i n  an attempt t o  eliminate flow asymmetry. Measurements taken were 
s imilar  t o  those f o r  the  basic model but extended t o  lower mass-flow 
r a t i o s  which simulated engine windmill air-flow requirements. 

FESULTS AND DISCUSSION 

In terna l  Flow Characterist ics of Twin-Inlet Systems 

Curves showing s t a t i c -  and total-pressure r a t i o s  versus mass-flow 
r a t i o  are presented i n  f igure  4 f o r  the twin-intake system of Model A. 
These curves represent system measurements made at the  simulated com- 
pressor s t a t ion  i n  the  common duct and. no attempt w a s  made t o  maximize 
i n l e t  performance. 
permit t h i s  system t o  operate supercr i t ica l ly ,  data  f o r  t he  unyawed case 

. 
Although the  maximum control-plug f l o w  area did not 
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show that  both s t a t i c -  and total-pressure r a t i o  curves undergo a sharp 
change i n  slope at a reduced value of mass-flow r a t i o .  This change i n  

showing shock wave pa t te rns  f o r  representat ive data points  noted D and E 
i n  figure 4 are presented i n  figure 5 .  

slope i s  accompanied by twin-duct flow asymmetry. Schlieren photographs .- 

- Individual ducts 

-- System asymmetry / 

The phenomenon of flow asymmetry i n  twin-intake systems has been 
analyzed i n  references 1 and 2. 
of flow continuity relate asymmetry primarily t o  individual  duct s t a t i c -  
pressure charac te r i s t ics .  For the  requirement of a uniform s t a t i c  pres- 
sure across t h e  entrance t o  t h e  common duct a pos i t ive  slope (decreasing 
s t a t i c  pressure with decreasing mass-flow r a t i o )  i s  t h e  bas i s  of insta-  
b i l i t y  since it does not readi ly  permit equal flow i n  bcth ducts; ra ther ,  
t he  flow quant i t ies  i n  the  individual ducts diverge as system mass flow 
i s  reduced u n t i l  reversed flow i s  experienced i n  one of t he  ducts.  

It w a s  shown t h a t  t he  bas ic  requirements 

Under flow conditions at f3 = 0' t he  system cha rac t e r i s t i c s  shown i n  
f igure  4 a re  typ ica l  and the  s implif ied sketch below relates these charac- 
t e r i s t i c s  t o  those of t he  individual  ducts.  System performance i s  ident i -  
c a l  t o  t ha t  of the individual ducts at  high mass-flow r a t i o s  s ince t h e  

L 

stat ic-pressure var ia t ion with mass flow allows symmetrical twin-inlet  
operation. I n  the  range of mass-flow r a t i o s  l e s s  than t h a t  f o r  maximum 
static-pressure r a t io ,  however, t he  two i n l e t s  operate asymmetrically, 
f o r  example at points M and N i n  t he  sketch. Flow cont inui ty  requirements 
r e s u l t  in  corresponding system performance at point 0 and generally i n  a 
rapid drop i n  system s t a t i c  pressure with decreasing mass-flow r a t i o .  

For P = +3O, f igure  4, t h e  slope of the  system stat ic-pressure 
r a t i o  curve w a s  pos i t ive  throughout t h e  e n t i r e  range of mass-flow r a t i o  
measured and flow asymmetry w a s  always present with no apparent s t ab le  
range of mass flow. 
symmetric or s tab le  mass-flow range with increasing angles of s ides l ip  
can be expected. 

References 4 and 5 indicate  t h a t  a reduction i n  the  

- 
Static-pressure unsteadiness f o r  t he  individual  ducts of Model A i s  

For 0' presented i n  f igure  6. 
s ides l ip  the  unsteadiness of both ducts increased sharply as t h e  mass- 

Again the  Mach number considered i s  2.0. 
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a. 
f l o  
w a s  observed (point  E, see a lso f i g s .  4 and 5 ) .  
at angles of s i d e s l i p  near zero, however, indicated a random, high- 
frequency switching of the  subc r i t i ca l  and supe rc r i t i ca l  flow conditions 
between t h e  two i n l e t s .  Pressure fluctuations imposed by t h i s  switching 
phenomenon dominated the  frequency-amplitude spectrum and, as a r e s u l t  , 
both i n l e t s  exhibited similar l eve l s  of unsteadiness. 

r a t i o  w a s  reduced below point D t o  the  value at which flow asymmetry 
Schlieren observations 

-1 

When the  angle of s ides l ip  w a s  increased t o  3' the  l e f t  o r  leeward 
duct flow w a s  always subc r i t i ca l  and, as shown, the  unsteadiness w a s  
considerably grea te r  than f o r  t he  r ight  o r  windward duct which experienced 
supe rc r i t i ca l  flow throughout the  mass-flow range. The unsteadiness or 
buzz associated with reduced flow i n  the leeward duct under conditions of 
f l o v  asymmetry w a s  undoubtedly due t o  shock-wave boundary-layer i n t e r -  
act ion forward of t h e  conical center  body. The " s l ip  l i n e "  phenomenon 
explained i n  reference 7 could a l s o  have contributed t o  t h e  unsteadiness. 
The magnitude of pressure f luc tua t ion  was subs tan t ia l ly  reduced at low 
values of mass-flow r a t i o  re f lec t ing  the s m a l l  quant i ty  of flow being 

under these conditions.  
@ handled by the  leeward duct. Flow reversal  i n  t h i s  duct i s  possible 

The e f f ec t  of flow asymmetry on fuselage s ta t ic-pressure dis t r ibu-  
t i ons  near t h e  i n l e t  i s  shown i n  figure 7. 
with minimum subc r i t i ca l  flow was  simulated by completely plugging one 
duct which w a s  instrumented with f lush pressure o r i f i c e s  as shown i n  t h e  
sketch. The r e s u l t s  show t h a t  la rge  posi t ive pressures appear on t h e  
fuselage forward of an i n l e t  during reduced flow operation. The resu l t -  
ing force a c t s  subs tan t ia l ly  ahead of the  center  of gravi ty .  
c a l  flow which occurs simultaneously through the  opposite duct i s  shown 
t o  maintain higher pressures aft of the i n l e t  than those of similar 
loca t ion  on the  subc r i t i ca l  s ide.  Although t h e  two forces  tend t o  oppose 
each other ,  it seems c l ea r  t h a t  because of i t s  longer moment arm, the  
forward force predominates and subcr i t ica l  flow i n  a leeward duct has a 
ne t  e f f e c t  of increasing the  yawing o r  res tor ing  moment on the  fuselage.  

The flow asymmetry associated 

Supercr i t i -  

I n  summary, twin-inlet  systems are fundamentally susceptible t o  
flow asymmetry at  reduced values of mass flow. 
pronounced e f f e c t  on the  fuselage static-pressure d is t r ibu t ion .  I n  

The flow asymmetry has 

I 

I 
addition, f o r  s ides l ip  angles between approximately +2O, flow asymmetry 

l i s  unsteady and flow conditions i n  the ducts reverse i n  random fashion. 

Effects  of Flow Asymmetry on S t a t i c  S t a b i l i t y  

Model A.- Yawing-moment and rolling-moment coef f ic ien ts  with cerre- 
sponding mass-flow r a t i o s  are  plot ted as a function of t he  angle of 

I -. 
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s ides l ip  i n  figure 8 f o r  a Mach number of 2.0. 
full-flow and reduced-flow control-plug se t t i ngs .  
with one duct completely plugged i s  a l so  shown. 

Data a re  presented f o r  
The ful l - f low s e t t i n g  

I n  f igure  8(a) f o r  an angle of a t tack  of 1.0' t h e  d i r ec t iona l  
s t ab i l i t y ,  Cnp, w a s  normal and sensibly l i n e a r  f o r  full-flow duct condi- 
t i ons .  A reduction i n  mass-flow r a t i o  of about 30 percent resu l ted  i n  
discontinuous yawing-moment var ia t ions  near zero s ides l ip  and an increase 
i n  Cn by 0.002 t o  0.003 at angles of s ides l ip  grea te r  than +2O. Observa- 
t i o n s  a t  these higher angles showed t h a t  s u b c r i t i c a l  flow exis ted  i n  t h e  
l e e w a r d  duct and supe rc r i t i ca l  flow i n  the  windward duct similar t o  t h a t  
i l l u s t r a t e d  i n  f igure 3 .  A somewhat grea te r  increase i n  Cn w a s  obtained 
by plugging t h e  l e f t  duct even though the  system mass-flow r a t i o  was  
g rea te r  than t h a t  f o r  t he  reduced flow s e t t i n g .  A t  t h i s  s e t t i n g  t h e  lower 
mass-flow values evidently resu l ted  from reversed flow occurring i n  t h e  
leeward duct. 

The e f f ec t s  of twin-duct i n s t a b i l i t y  o r  switching a re  evident i n  the  
0 range -2 

higher angles of s ides l ip .  
flow associated with the  subc r i t i ca l  duct during asymmetric operation. 
It appears t ha t  even though there  w a s  considerable unsteadiness i n  t h e  
range of s ides l ip  angles grea te r  than about +2.0° t he  s t a b i l i z i n g  e f f ec t  
of s ides l ip  prevented switching. 

5 P 5 +2O; t he  incremental changes i n  Cn 
The i n s t a b i l i t y  was  t r iggered  by unsteady 

were t h e  same as at 

I n  f igure 8(b)  the  angle of a t tack  has been increased t o  8 . 6 O  and a 
reduction i n  mass-flow r a t i o  again resu l ted  i n  subc r i t i ca l  flow i n  t h e  
leeward duct at high angles of s ides l ip .  However, contrary t o  the  r e s u l t s  
for a = 1.0' reduced m a s s  flow decreased Cn and increased t h e  rol l ing-  
moment coeff ic ient  C 2 .  Balance force measurements and s ta t ic-pressure 
d is t r ibu t ion  s tudies  f o r  a = 8.6 , compared t o  those f o r  
indicate  a rearward s h i f t  i n  t he  center  of pressure on t h e  fuselage due 
t o  the  subcr i t ica l  duct flow f i e l d .  
Also, the flow f i e l d  reduces the  lift of the  leeward wing, thus 
increasing C 2 .  

0 0 a = 1.0 , 
The r e s u l t  i s  a redilction i n  Cn. 

Longitudinal s t a b i l i t y  w a s  found t o  be unaffected by duct flow 
asymmetry over t he  range of a and P t e s t ed .  

The ta i l -of f  l a t e r a l  cha rac t e r i s t i c s  of Model A are presented i n  
f igure  9. Comparison of f igures  g(a)  and 8 (a )  shows the  same incremental 
e f f ec t s  due t o  mass-flow ra t io ,  indicat ing the  t a i l  w a s  unaffected by 
duct f l o w  asymmetry at 
shown i n  figure 9 (b ) ,  t h e  yawing-moment curve f o r  reduced flow i s  
displaced below t h e  full-flow curve. The reason f o r  t h i s  i s  not clear;  
however, the change i n  l a t e r a l  s t a b i l i t y  due t o  mass-flow r a t i o  i s  i n  
the  same direct ion and of t he  same general increment as f o r  t h e  ta i l -on 

a = l.Oo. For the  high-angle-of-attack case 

t 
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case of f igure  8 (b ) .  
indicat ing the  fuselage pressures t o  be mainly responsible f o r  reduced 
values of Cn a t  angle of a t tack .  

Again, the  t a i l  effect  would seem t o  be minor, 

I n  summary, flow asymmetry, occurring as a r e s u l t  of  reduced i n l e t  
flow, caused subs tan t ia l  changes i n  airframe s t a t i c  l a t e r a l  s t a b i l i t y .  
The e f f e c t s  which varied somewhat with angle of a t t ack  were pr imari ly  a 
r e su l t  of changes i n  the  fuselage pressures, inasmuch as adding or remov- 
ing the  t a i l  surfaces had no s ignif icant  e f f ec t  on t h e  incremental changes 
i n  the  l a t e r a l  s t a b i l i t y  parameters. 

Models B and C.-  The i n l e t  systems f o r  Models B and C were both 
located above the  wing. This w a s  i n  contrast t o  t h a t  of Model A which 
had a mid-wing locat ion.  A comparison of f igures  l O ( a )  and U ( a )  with 
f igure  8(a) shows the  change i n  l a t e r a l  s t a b i l i t y  cha rac t e r i s t i c s  with 
reduced i n l e t  f l o w  at low angles of attack t o  be s i m i l a r  f o r  a l l  three  
configurations.  
( f i g s .  10(b)  and l l ( b ) )  did not, however, reverse t h e  e f f e c t s  of low 
mass flow as i n  the  case of Model A. Thus, it appears t h a t  t he  in t e r -  
ference e f f ec t s  of duct f l o w  asymmebry on airplane l a t e r a l  s t a b i l i t y  
depend on the  i n l e t  locat ion with respect t o  both fuselage and wing. 
Further invest igat ion of t h i s  e f fec t  would seem desirable .  Twin-duct 
i n s t a b i l i t y  i s  not indicated by the data points  of f igures  10 and 11 but 
flow observations during the  t e s t  substantiated i t s  existence at low 
angles of yaw (dashed curves) s i m i l a r  t o  Model A. 

Increasing the  angle of a t tack  t o  approximately 7' 

It should be s t a t ed  t h a t  t he  in l e t s  of Models B and C incorporate 
the  idea of a variable second ramp. Proper scheduling of t he  second 
ramp angle gives these systems the  capabi l i ty  of g rea t ly  reducing t h e  
adverse e f f e c t s  of flow asymmetry. 

Tail-off t e s t s  f o r  these models again showed the  e f fec t  of flow 
asymmetry on t a i l  loads t o  be negligible.  
Model B were obtained from reference 8. 

S t a b i l i t y  cha rac t e r i s t i c s  f o r  

Wind Tunnel Data Applied t o  Flight Performance - Model A 

The incremental changes i n  yawing- and rolling-moment coef f ic ien ts  

The data  suggest t h a t  two 

The f i r s t  f l i g h t  mode would occur at low-angle-of-attack 

caused by twin-inlet flow asymmetry a t  reduced mass-flow r a t i o  are shown 
i n  f igu re  12  f o r  the  tes t  Mach number range. 
operating modes could ex i s t  i n  f l i g h t  a t  these Mach numbers as i l l u s t r a t e d  
i n  f igu re  13. 
coridiiioiis mid could su-i;port a yawZng oscil lat , ion as follows: 
disturbance resu l t ing  i n  flow asymmetry would increase t h e  yawing moment 
and e s t ab l i sh  a yawing ro ta t ion  which would tend t o  trim t he  a i r c r a f t  a t  
a s m a l l  angle of yaw. 
d i rec t ion  causing reversal  of flow asymmetry which would, i n  turn,  change 

A n  i n i t i a l  

However, the  rotation would necessar i ly  be i n  a 
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direct ion of t he  yawing motion. Repetit ion of t h i s  cycle could be 
expected t o  increase the  amplitude of t he  oscil.lat,ion, making the  air- 
c r a f t  dynamically unstable i n  yaw. 

- *  

.- 
The o ther  f l i g h t  mode would occur at high-angle-of-attack a t t i t u d e s  

Flow asymmetry would r e s u l t ' i n  and would not be subject t o  o s c i l l a t i o n .  
a direct ion of ro t a t ion  which would r e s i s t  reversa l  of duct flow condi- 
t i ons .  A s  a consequence, t he  airplane would assume a f ixed  a t t i t u d e  i n  
yaw at which the  incremental yawing moment due t o  flow asymmetry would 
be balanced by the  moment generated by the  v e r t i c a l  s t a b i l i z e r .  
angles of a t tack  r o l l i n g  conditions might be manifested as indicated by 
the  data i n  'figure 8 ( b ) .  

A t  high 

Aircraft  f l i g h t  cha rac t e r i s t i c s  can be r ead i ly  obtained by simula- 
t i o n  studies requir ing simultaneous solut ion of t he  equations of motion 
involved. I f  these equations a re  modified so as t o  include t h e  disturb- 
ances i n  y a w  and r o l l  shown by the  wind-tunnel data  of f igure  12,  and i n  
the  manner shown i n  f igure  13, a i r c r a f t  f l i g h t  motions can be s tudied on 
a time-history b a s i s .  

The r e s u l t s  of a simulation study a r e  reported i n  reference 9 and a 
comparison of f l i g h t  measurements and simulator r e s u l t s  i s  reproduced i n  
f igure  14 f o r  t he  low-angle-of-attack mode at an i n i t i a l  Mach number of 
2.0. 
r e s u l t  o f  reduced engine t h r u s t  and possibly accounts f o r  t he  phase l a g  
variance indicated.  It i s  evident t h a t  t h e  simulator s tud ies  give an 
accurate p ic ture  of t h e  f l i g h t  motions, agreeing well i n  both amplitude 
and frequency. 
s t a b i l i t y  t h a t  r e s u l t  from flow asymmetry can be responsible f o r  r a the r  
violent  dynamic o s c i l l a t i o n s  i n  f l i g h t .  

Mach number f o r  t he  f l i g h t  measurements decreased t o  1.85 as a 

Figure 1 4  shows t h a t  t he  incremental changes i n  s t a t i c  

Flow Stab i l i za t ion  of Twin-Inlet Systems 

A number of p o s s i b i l i t i e s  f o r  reducing the  adverse e f f e c t s  of flow 
asymmetry i n  twin-inlet  systems present themselves. One approach has 
been t o  reduce the flow interdependence of t he  two ducts by eliminating 
any common ducting. This i s  done by extending the  individual  d i f fusers  
so t h a t  the  common duct juncture occurs a t  t he  forward face  of the  
engine (see r e f .  6 ) .  

Another approach incorporates flow s t a b i l i z e r s  o r  def lec tors  which, 
when extended, c rea te  a symmetrical shock pa t t e rn  with an  attendant 
decrease i n  the mass flow i n  both ducts.  
l o s s  and drag r i s e  promote decelerat ion without requir ing a reduction 
i n  t h r o t t l e  pos i t ion .  
speed are favorable t o  reducing o s c i l l a t i o n s  r e su l t i ng  from asymmetric 

Also, t he  attendant t h rus t  

Figure 12 ind ica tes  t he  e f f e c t s  of decreasing 
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r l  

duct flow. The performance penal t ies  associated with t h e  use of 
def lectors  preclude t h e i r  use a t  conditions o ther  than flame-out o r  
mechanical f a i l u r e .  .* 

A flow s t a b i l i z e r  invest igat ion has been reported i n  reference 10. 
Two types of flow deflectors,  a cone plug and t i l t i n g  cone, were found 
t o  s a t i s f y  requirements f o r  symmetric shock pa t te rns  and provided per- 
formance within acceptable limits of  f l o w  d i s to r t ion  and unsteadiness at  
the  compressor s t a t ion .  The cone plug and t i l t i n g  cone def lectors  are 
shown mounted on the  conical centerbodies of Model A i n  f igure  15. Both 
configurations were t e s t ed  and found t o  give comparable r e s u l t s .  A 
dimensional sketch of the  t i l t i n g  cone def lector  i s  shown i n  f igure  16. 
Typical r e s u l t s  from t h i s  arrangement at three  Mach numbers a re  compared 
t o  those of t he  basic  model i n  f igure  17. It i s  seen t h a t  with the  flow 
def lec tors  there  i s  no appreciable change i n  t h e  basic  lateral  s t a b i l i t y  
a t  simulated engine windmill conditions (minimum flow). 
graphs i n  f igure 18 f o r  
model with and without def lectors .  The schl ieren photographs indicate  
strong shock pa t te rns  a re  associated with the  def lectors ,  however, and a 
la rge  drag rise cam be expected. 

Schlieren photo- 
& = 2.0 show a flow comparison of t he  basic  

r( 

CONCLUDING REMARKS 

The phenomenon of flow asymmetry i n  twin-intake air induction systems 
w a s  invest igated on three complete airplane configurations at Mach numbers 
within t h e  range from 1 .6  t o  2.35. 

During asymmetric flow conditions high l eve l s  of unsteadiness were 
associated with the  in te rna l  flow o f  the subc r i t i ca l  duct. 
duct f low s igni f icant ly  a l t e r ed  the  external flow pa t te rn  so t h a t  t he  
r e su l t i ng  var ia t ion  i n  fuselage and wing surface pressures subs tan t ia l ly  
affected t h e  l a t e r a l  s t a b i l i t y .  

Also, reduced 

Previously published f l i g h t  simulation s tudies  showed t h a t  the  
Cnp and C 2  measured i n  t he  wind tunnel account f o r  the  P increments i n  

o s c i l l a t i o n s  t h a t  occur when flow asymmetry i s  encountered i n  f l i g h t .  

Flow deflectors  mounted on the  conical compression surfaces of the  
intake were found t o  be an e f fec t ive  means of reducing flow asymmetry 
with no adverse e f f ec t  on airplane s t a t i c  s t a b i l i t y .  

h e s  Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif . ,  May 22, 1959 
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A-21404 
(a) Photograph of wind-tunnel i n s t a l l a t i o n .  

Figure 2.- Photograph and drawings showing d e t a i l s  of Model B. 
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A-23285 

(a) Photograph of wind-tunnel i n s t a l l a t i o n .  

Figure 3.- Photograph and drawings showing d e t a i l s  of  Model C .  
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Figure 4.- I n l e t  system s t a t i c -  and tot&-pressure r a t i o  charac te r i s t ics ;  
Model A, a = 1 .Oo . 
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Figure 8.- Lateral  s t a b i l i t y  cha rac t e r i s t i c s  as af fec ted  by duct 
mass-flow ra t io ;  Model A, t a i l  on, = 2.0. 
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B, del3 

(b) u = 8.6 0 

Figure 8. - Concluded. 
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Figure 9.- Lateral  s t a b i l i t y  cha rac t e r i s t i c s  as af fec ted  by duct 
mass-flow ra t io ;  Model A, t a i l  o f f ,  M, = 2.0. 
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Figure 10.- Lateral  s t a b i l i t y  cha rac t e r i s t i c s  as af fec ted  by duct 
mass-flow ra t io ;  Model B, t a i l  on, = 2.20. 
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Figure 10 .- Concluded. 
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(a) a = 1.0~ 

Figure 11.- Lateral  s t a b i l i t y  c h a r a c t e r i s t i c s  as af fec ted  by duct 
mass-flow ra t io ;  Model C ,  t a i l  on, = 2.1. 

. 
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Figure 12.-  Incremental var ia t ions  i n  yawing-moment and rolling-moment 
coeff ic ients  f o r  t he  range of t es t  Mach numbers; Model A.  
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(a) Low angle of a t tack .  

( b )  High angle  o f  a t tack .  

Figure 13.- Ai rcraf t  yawing motions as a r e s u l t  of duct-flow asymmetry 
at reduced mass-flow r a t i o s .  



Time ,  seconds 

Figure 14.- Time-history comparison of aircraft motions as recorded in 
flight and by flight simulation (ref. 8). 



A-22624 .1  (a) Tilting cone d e f l e c t o r .  

A-22625 
( b )  Cone plug de f l ec to r .  

Figure 15.- Photographs or f low d e f l e c t o r s  used t o  reduce duct flow 
asymmetry; Model A.  
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Figure 16.- Detai l  

Section A-A 

A l l  dimensions i n  inches 

sketch of t i l t i n g  cone flow deflector ;  Model A. 
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m3/m, = 1.019 
B = -2.0° 

(a) Basic model. 

m3/mo3 = 0.819 
B = -2.0° 

m3/% = 0.218 
p = -2.0° 

(b)  Basic model with de f l ec to r s .  

Figure 18.- Schl ieren photographs showing t h e  e f f e c t  of f low de f l ec to r s  
on i n l e t  flow; Model A, M a =  2.0, a = 1.0 . 0 - 

NASA - Langley Field, Va. A-216 
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